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Protein conformation families for automatic model building

were determined for dipeptidic, tripeptidic, tetrapeptidic and

pentapeptidic fragments. Mapping in n-dimensional confor-

mational space (n = 2, 4 and 6), a conformation-generator

method, a deletion-sorting process and a verification proce-

dure were used to calculate the conformational preferences.

Torsion angles were harvested from PDB structures with

resolutions better than 1.5 Å. Statistical weights were

calculated for the conformation families.
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1. Introduction

Protein conformations are mainly classified on the basis of

hydrogen-bonding patterns and the two-dimensional Rama-

chandran plot (Ramachandran & Sasisekharan, 1963).

Limited information is available for higher dimensional spaces

(Pavelcik & Vanco, 2006; Sims et al., 2005).

The properties of a conformation space for polypeptides

have emerged in a step-by-step fashion during the history of

protein structure, starting with secondary structures (Pauling

& Corey, 1951; Pauling et al., 1951) and continuing with the

Ramachandran map (Ramachandran & Sasisekharan, 1963),

the classification of turns (loops; Venkatachalam, 1968),

hydrogen-bonding patterns (Kabsch & Sander, 1983) and

many other contributions. A detailed analysis of two-

dimensional space has recently been published (Hovmöller et

al., 2002). Results for tripeptides in four-dimensional torsion-

angle space can be found in Pavelcik & Vanco (2006). Sims et

al. (2005) have analyzed higher dimensional (’,  )n maps.

Useful information can be found on the PDBsum web

pages (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/).

A comprehensive classification of small motifs is available at

http://www.ebi.ac.uk/msd-srv/msdmotif. The study of the

similarity of protein fragments by cluster analysis is a closely

related topic. In this approach, different descriptors, such as

the positions of C� atoms (see, for example, Micheletti et al.,

2000; Kolodny et al., 2002), are used rather than torsion angles.

The allowed and disallowed regions of the Ramachadran

map are similar to the rotameric nature of saturated organic

molecules, protein side chains (Dunbrack & Karplus, 1994)

and nucleic acids (Murray et al., 2003). Generalization of these

concepts leads to the notion of conformation families. The �R,

�1, �2 and �L regions of the Ramachandran map can be

regarded as examples of conformation families in protein

structures. The concept of a conformation family is useful for

the classification of macromolecular structures, structure

verification and model building (both theoretical and experi-

mental). It is believed that protein conformation space is



highly correlated (Micheletti et al., 2000) and that protein

structure can be reconstructed using a limited number of low-

dimensional structural fragments (Jones & Thirup, 1986).

A simple method (Pavelcik & Vanco, 2006) to search for

and to identify conformational families has recently been

developed and this work is extended in scope within this

article. A conformation family, within the concept of Pavelcik

& Vanco (2006), is defined as a region of conformational space

that is highly populated by experimentally observed confor-

mations. A smoothed function of conformation density in this

region has a local or global maximum. Conformation space is

an infinite periodic torsion-angle space. A square 360 � 360�

(or 1 � 1 in cycles) in two dimensions is a unit cell that

resembles a crystallographic unit cell. If a molecular fragment

is symmetrical, then even a plane (space) group and asym-

metric unit can be assigned (however, with the exception of

polyglycine, this is not the case for proteins). The principal

idea of the method is that it is practically impossible to view

multidimensional surfaces but it is relatively easy to identify

maxima (or other critical points) on such surfaces. The

distance between two conformations in multidimensional

torsion-angle space is a second criterion for definition of the

conformation family. The distance between two conformation

families should not be shorter than a certain minimum

(Pavelcik & Vanco, 2006).

While in the previous paper (Pavelcik & Vanco, 2006) we

concentrated on method development, in this paper a

comprehensive analysis of conformation families was carried

out using high-resolution structures from the Protein Data

Bank (Bernstein et al., 1977; Berman et al., 2000). Our calcu-

lations identified conformation families in protein structures

and their approximate statistical weights.

The primary rationale for these calculations is to derive

accurate conformation families for automatic interpretation of

electron density in X-ray crystallography (Pavelcik et al., 2002;

Pavelcik, 2003, 2004, 2006a), particularly at lower resolutions.

The top conformation families are used directly as search

fragments in the phased rotation-conformation and transla-

tion function (PRCTF; Pavelcik, 2006b). The statistical

weights may be useful in more sophisticated model-building

methods. Less populated families can be used to extend

regions of secondary structure.

2. Methods

The method described by Pavelcik & Vanco (2006) is based on

multidimensional conformation maps (n-dimensional maps),

generators of conformation families and a verification and

averaging procedure. Only minor changes have been intro-

duced into the method and into the computer program since

the work described in Pavelcik & Vanco (2006).

2.1. Mapping

A grid is constructed in multidimensional space. A spherical

search probe is positioned at each grid point and the number

of experimental points that are within the sphere are consid-

ered as the conformation density assigned to that grid point.

Peak-picking is used to locate maxima on the conformation

density surface. No principal changes were made compared

with the description in Pavelcik & Vanco (2006). Faster code

was developed. A larger amount of experimental data has

allowed us to reduce the radius of the search probe and to

thereby obtain better resolution of the conformation families.

2.2. Verification and averaging

The radius of averaging is variable and is defined as

R ¼ RDð0:5NÞ1=2;

where N is a dimension of the conformation search and RD is

the empirically found radius for the two-dimensional search.

This increases the n-dimensional volume of the space covered,

without the danger of obtaining overlapping families. The

formula is empirical, but is related to a length of a body

diagonal in a multidimensional cube (d = aN1/2), and may help

to scale distances in spaces of different dimensionality.

2.3. Sorting and deleting

This procedure was developed as an independent step in the

algorithm. Two conformation families separated by a short

distance are merged into one family by deleting the less

populated family. The deletion distance is a function of the

search dimension and is defined as 35� for two and three

dimensions, 37� for four dimensions and 40� for six and eight

dimensions. A deletion limit cannot be increased more greatly

in proportion to the number of degrees of freedom because

two conformation families might differ only in one torsion

angle. The deletion limit was introduced as a tool for removing

false maxima in high-density regions which can be caused by

fluctuations in the conformation density arising from noise.

The importance of the deletion limit is reduced if the number

of experimental points is high and can be reduced or elimi-

nated completely for smooth surfaces.

2.4. Generation of conformation families

The generator method, which was only mentioned in

Pavelcik & Vanco (2006), is further tested and used in this

work. Using this tool, multidimensional polypeptide confor-

mation families can be generated, for example, as combina-

tions of two-dimensional conformation families. Subspaces are

analyzed by direct mapping and conformation families are

determined. These low-dimensional conformation families are

called generators. In principle, generators can come from

different sources, such as theoretical calculation, stereo-

chemical rules or the literature [for example, one generator

could be the pair of torsion angles (�64, �41�) and another

generator could be the quartet (�119, 138, �115, 135�) to

generate the conformation family in six dimensions (�119,

138, �115, 135, �64, �41�) or (�64, �41, �119, 138, �115,

135�); we can use two triplets or three doublets for the same

purpose]. From five two-dimensional generators, we can

generate 25 conformation families in four dimensions or 125

families in six dimensions. The generated conformation family
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is evaluated by the number of experimental conformations

that are within a multidimensional sphere constructed around

a point belonging to the generated conformation family. The

radius of the sphere is approximately the average of the probe

radius used in mapping and the verification radius. Low-

population conformation families are deleted. If two gener-

ated families are too close (separated by a short multi-

dimensional distance) the less populated family is deleted.

Surviving conformations are optimized.

2.5. Maximization (optimization) procedure

The generator usually represents a local maximum in a

torsion-angle subspace. However, the combined conformation

may not be the local maximum in n-dimensional torsion-angle

space. For example, it may be a multidimensional ridge on a

slope close to the local maximum. A simple procedure was

designed to move a generated conformation towards the

maximum. This procedure can eventually lead to merging of

some close conformations. The procedure is based on repe-

ated averaging within a sphere defined by a maximization

(optimization) radius. The averaged conformation defines a

new position for a conformation. In a sphere with an asym-

metric distribution about the centre, the averaging moves the

conformation to a more populated region (towards the

maximum). The radius of averaging should be sufficiently

small to prevent undesirable merging and to prevent escape

from a local maximum (particularly to a nearby dominant

conformation type). The averaging radius was selected to be

equal to the mapping radius. The process is iterative. Cycles of

averaging are mixed with cycles of deletion. Final families are

verified again and averaged within the verification radius in

the same way as used for mapping.

3. Results and discussion

Calculations were carried out for dipeptidic, tripeptidic,

tetrapeptidic and pentapeptidic fragments. These are related

to model-building blocks AlphaD, AlphaT, AlphaQ and

AlphaP, respectively (Pavelcik, 2006b). The chemical

connectivity of these fragments can be formulated as AlphaD,

C�–CO–Ala–N–C�; AlphaT, C�–CO–Ala–Ala–N–C�; AlphaQ,

C�–CO–Ala–Ala–Ala–N–C�; AlphaP, C�–CO–Ala–Ala–Ala–

Ala–N–C�.

The fragments reflect the fact that because of its planarity

the peptide group is a better basic building block for protein

modelling than an amino-acid residue. One has to realise that,

for example, a tripeptidic AlphaT contains two pairs of (’,  )

and represents an extended dipeptide, while the total number

of atoms is more compatible with a tripeptide. The confor-

mational flexibility of AlphaT can be expressed as (’,  )2

(Sims et al., 2005).

Protein structures were filtered from the Protein Data Bank

based on 90% sequence similarity (mainly to remove

equivalent structures and mutants) using the PDB server

advanced search (http://www.rcsb.org/pdb/search/advSearch.do),

a minimal chain length of eight residues (to remove synthetic

polypeptides) and resolutions of 0.5–1.5 Å (February 2007,

1471 files). PDB files containing DNA or RNA were removed

(mainly for computational reasons). The codes of the PDB

structures can be found in Table 1 of the supplementary

material1. No further analysis was performed with respect to R

factors or the numbers of duplicate chains in each structure.

The bias introduced by multiple copies of the same protein in
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Table 1
Conformation map for dipeptidic (two dimensions, AlphaD) fragment.

The number of experimental conformations is 466 713. Grid NG = 16. Search
probe R1 = 30�. Verification radius R2 = 50.0�. Noise level 5. Deletion limit 35�.
N is the number of experimental conformations in each family. P is the
percentage probability. ’ and  are averaged main-chain torsion angles for
each family.

No. N P (%) ’ (�)  (�) Type

1 209063 44.79 �67 �35 A
2 108908 23.34 �122 136 B
3 79397 17.01 �72 142 C
4 20919 4.48 72 21 G
5 3530 0.76 94 178 X
6 2646 0.57 63 �136 E

Table 2
Conformation map for tripeptidic (four dimensions, AlphaT) fragment.

The number of experimental conformations is 458 741. Grid NG = 16. Search
probe R1 = 30�. Verification radius R2 = 70.7�. Noise level 5. Deletion limit
37.0�. N is the number of experimental conformations in each family. P is the
percentage probability. ’ and  are averaged main-chain torsion angles for
each family. The cumulative probability for the families listed is <95%.

No. N P (%) ’1 (�)  1 (�) ’2 (�)  2 (�) Type

1 164850 35.94 �64 �37 �68 �34 AA
2 81392 17.74 �119 138 �115 135 BB
3 42265 9.21 �82 142 �76 142 CC
4 25841 5.63 �75 140 �73 �28 CA
5 17586 3.83 �95 �5 �78 139 DC
6 14521 3.17 �92 �21 �143 153 DB
7 13309 2.90 79 13 �90 144 GC
8 12821 2.79 �77 �21 �119 53 AZ
9 12404 2.70 �132 150 �73 �24 BA
10 11684 2.55 �88 93 �139 156 ZB
11 10219 2.23 �93 �3 74 22 DG
12 5328 1.16 �60 136 80 4 CG
13 4136 0.90 72 20 �83 �22 GD
14 3206 0.70 �123 138 57 40 BG
15 2519 0.55 �93 �9 88 �173 DX
16 2195 0.48 56 36 75 11 GG
17 2052 0.45 102 �173 �76 141 XC
18 1633 0.36 59 �131 �85 �2 ED
19 1257 0.27 �139 156 99 �174 BX
20 1200 0.26 �127 127 61 �130 BE
21 1201 0.26 95 173 �70 �27 XA
22 1150 0.25 89 �166 �135 150 EB
23 1100 0.24 �156 179 152 119 ??
24 1071 0.23 �77 146 102 �169 CX
25 366 0.08 87 �170 �99 79 XZ
26 201 0.04 106 10 61 42 DG
27 127 0.03 73 �155 91 �167 EE
28 114 0.02 88 �176 61 36 XG
29 91 0.02 92 163 73 �162 XE

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: SX5071). Services for accessing this material are given at the back
of the journal.



the asymmetric unit (NCS) is probably minimal with this

amount of data. Disordered or incomplete residues were

removed from the calculation of torsion angles. The number of

torsion angles harvested from the PDB was almost half a

million.

All conformation maps were calculated with a grid NG = 16

(this is equivalent to 360/16 = 22.5�). The noise level of the

conformation density map was estimated to be five experi-

mental conformations per mapping sphere belonging to the

grid point. In the text, all angles and all distances (in angular

space) between conformations are given in degrees. P is the

probability of appearance of the conformation and is reported

as a percentage.

The following letters are used to classify two-dimensional

conformations and typical values (’,  ) are given in

parentheses. A is �-helix (�64, �41), B is �1 (�121, 128), C is

�2 (�66, 137), D is � (�90, 0), G is � (50, 25), Z is a bridge

region (�100, 70), X is (90, 180), E is (60, �140) and ‘?’ is an

unspecified conformation (mainly extended glycine confor-

mations).

Two-dimensional and four-dimensional maps, which were

also evaluated in the previous study (Pavelcik & Vanco, 2006),

were recalculated with the additional experimental data (a 20-

fold increase). Full results are given in Tables 1 and 2.

No new conformation family appeared in the new dipep-

tidic map compared with the original analysis (Pavelcik &

Vanco, 2006). There are only small changes in the populations

of individual conformations. There are six conformational

families in two dimensions, with 9% of the total observations

being in unspecified conformations using spherical confor-

mation regions (given by the verification radius) in the current

method. In principle, a more detailed topological analysis

specifying boundaries of the conformation families can be

performed with the near-half-million torsion angles available.

From a stereochemical point of view, a maximum in

conformation density may contain several close but over-

lapping conformation types. These types depend upon the

conformations of neighbouring residues and on their struc-

tural role (e.g. helix or loop). To distinguish conformation

families from these subtypes, we will call the latter ‘confor-

mational primitives’.

More tripeptidic conformations (’1,  1, ’2,  2) = (’,  )2

were generated than in the previous study (Pavelcik & Vanco,

2006), but all of the 17 conformation families calculated in

Pavelcik & Vanco (2006) are among the top families. The most

important change is that the � region is split into two inde-

pendent conformation families: BB and CC. Two new

conformations, (�77, �21, �119, 53), P = 2.8, AZ type, and

(�88, 93, �139, 156), P = 2.6, ZB type, are related to a bridge

region (Hovmöller et al., 2002). Z (inverted classical �-turn) is

not an independent conformation family in the two-dimen-

sional map. Among the top 20 (P > 0.26) conformations, these

are the only additional families that emerge from the new

analysis.

Four new conformation families (0.23 < P < 0.26) emerged

from the noise region. There is a sharp drop in conformation

density beyond conformation 24. The absolute number of

conformations could be estimated as 24–25, with 5% of the

remaining conformations regarded as unspecified and in a

noise region. There may still be some minor conformation

families in the noise region. Several conformation families

belonging to �-turns clearly showed (�90, 0�) as an inde-

pendent conformation primitive, which is overlapped in two

dimensions by a dominant �R region. The overlap of the �R

region with the �-turn type I is reflected in a slightly reduced  
angle for conformation 1 compared with ‘pure’ �-helix (�64,

�41�) (Hovmöller et al., 2002). All major �-turns (I, II, VIII, I0,

II0; Hutchinson & Thornton, 1994) can be found among the

conformation families.

Two-dimensional and four-dimensional calculations were

extended by direct tetrapeptidic mapping. The calculation of a

six-dimensional map took approximately 5 d on an Intel Core2

Duo processor (8 h per section, 16 sections) with 0.4 � 106

experimental conformations and 16 � 106 grid points. The top

conformation families (representing approximately 75% of

the conformation space) are given in Table 3. The full tetra-

peptidic table is deposited as supplementary material.

Results for the tetrapeptidic fragments in Table 3 show the

high conformational flexibility of protein structures and the

importance of the Ramachandran plot. Again, many confor-

mations can be classified in terms of basic two-dimensional

‘Ramachandran’ conformations. Tripeptidic mapping demon-

strated that we also have to consider D (�90, 0�) and Z (�104,
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Table 3
Conformation map for tetrapeptidic (six dimenions, AlphaQ) fragment.

The number of experimental conformations is 451 218. Grid NG = 16. Search
probe R1 = 30�. Verification radius R2 = 86.6�. Noise level 5. Deletion limit 40�.
N is the number of experimental conformations in each family. P is the
percentage probability. ’ and  are averaged main-chain torsion angles for
each family.

No. N P (%) ’1 (�)  1 (�) ’2 (�)  2 (�) ’3 (�)  3 (�) Type

1 133602 29.61 �64 �39 �65 �39 �68 �36 AAA
2 45415 10.06 �118 139 �116 136 �114 135 BBB
3 18182 4.03 �85 143 �81 142 �79 141 CCC
4 15009 3.33 �86 142 �61 �32 �71 �25 CAA
5 12304 2.73 �96 140 �81 143 �70 �29 CCA
6 10154 2.25 �68 �21 �93 �5 �83 140 ADC
7 8157 1.81 �67 �29 �79 �19 �121 47 CDZ
8 8048 1.78 �68 �30 �92 �2 75 22 ADG
9 7785 1.73 �94 �4 �85 143 �82 140 DCC
10 6982 1.55 �94 �22 �143 151 �121 138 DBB
11 6654 1.47 �84 134 �91 �26 �148 151 CDB
12 6566 1.46 �92 104 �140 155 �76 142 ZBC
13 6436 1.43 �93 �3 77 21 �91 143 DGC
14 6024 1.34 78 13 �93 145 �88 137 GCC
15 5630 1.25 �94 �5 �78 137 �75 �25 DCA
16 4148 0.92 �80 141 �90 95 �138 157 CZB
17 3814 0.85 �80 �21 �121 59 �66 �27 DZA
18 3477 0.77 �94 39 �97 �46 �64 �36 ZDA
19 3003 0.67 �140 153 �135 147 �157 �168 BB?
20 2915 0.65 �140 153 �142 �177 �67 143 B?C
21 2911 0.65 �92 �8 �111 �50 �109 �9 D?D
22 2856 0.63 �89 �20 �143 159 �75 �24 DBA
23 2755 0.61 �88 144 �60 137 81 3 CCG
24 2683 0.59 �71 140 �160 170 �127 177 C??
25 2683 0.59 �78 134 �97 �4 �80 137 CDC
26 2653 0.59 �58 134 84 �2 �87 147 CGC
27 2620 0.58 �165 174 �164 169 �143 152 ??B
28 2540 0.56 �119 169 �84 �1 �92 �7 BDD



70�) conformations as independent conformation primitives

for classification. Tetrapeptidic mapping supports this idea

(for example, conformations 6, 8, 9; 7, 12, 16). The tripeptidic

mapping also showed that there are no BC or CB peaks

representing mixed �1 and �2 structure. Again, only two peaks

representing all-� structure (BBB, P = 10.1%; CCC, P = 4.1%)

and not eight (BBB, BBC, BCB, CBB, CCB, CBC, BCC, CCC)

are found by tetrapeptidic analysis. Tetrapeptidic mapping

reveals several highly extended conformations that may help

to classify or subdivide the large � region (for example,

conformations 19, 20, 24 or 27) and conformation families 19

and 20 suggest (�150, �170�) as another conformation

primitive.

In a previous analysis employing multidimensional scaling,

Sims et al. (2005) found only eight representative conforma-

tions of (’,  )3, which could be an artifact of their method and

the limited (only 6000) number of structure fragments used. A

completely different picture has emerged from this analysis.

There are three highly populated conformations (AAA,

P = 29.6%; BBB + CCC, P = 14.1%) that cover 44% of

conformation space. The top four, well separated, families

AAA, BBB, CCC and CAA (P = 3.3%) represent almost half

of the conformation space. The other conformation families

(starting with CCA, P = 2.7%, and ADC, P = 2.3%) represent

a continuous sequence of families with slowly decreasing

probabilities of appearance and no sharp changes. These

families represent the other half of conformation space.

If we consider six conformation families in two dimensions,

we theoretically have 36 conformational families in four

dimensions and 216 combinations in six dimensions.

Comparable numbers are found by n-dimensional mapping.

We found 24–25 tripeptidic (’,  )2 conformation families. It is

difficult to determine the number of conformation families in

higher dimensions because of the long tail of noise confor-

mations and the arbitrary cutoff. The number of conformation

families appears to increase with the number of available data.

One can define the relative number of conformations for fixed

occupancy of the conformation space. For 90% occupancy we

obtain five (’,  )1, 13 (’,  )2 and 83 (’,  )3 conformation

families. For 95% we obtain six, 29 and 133 conformations,

respectively. Similar data have also been obtained by cluster

methods [for example, 28 and 202 by Micheletti et al. (2000)

for (’,  )2 and (’,  )3, respectively]. The view of Kim’s school

(Sims et al., 2005) appears to be over-optimistic with respect to

Levinthal’s paradox (Levinthal, 1968). From our analysis, the

number of conformations can be estimated as 4N–5N, where N

is the number of residues in the protein. Cumulative prob-

ability graphs for each fragment type are given in Figs. 1, 2

and 3.

Pentapeptidic families (eight-dimensional space, six C�

atoms, AlphaP fragment) were obtained using the generator

method. The eight-dimensional map contains 4 � 109 grid

points (for NG = 16) and this number is not comparable with

the number of experimental data (0.2 � 106). Calculations for

direct mapping in conformation space would take several

years on a single processor.

The generator method was tested in four and six dimen-

sions. Dipeptidic conformation families (two dimensions;

Table 1) were used to generate tripeptidic and tetrapeptidic

conformation families. These results were compared with

those of direct four-dimensional and six-dimensional mapping.

Results for AlphaT can be found in the supplementary

material. From these analyses several conclusions could be

reached.

(i) The top generated families are consistent with those of

the mapping.

(ii) The number of generated families is smaller than those

of the mapping.
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Figure 1
Cumulative probability versus family number for dipeptidic fragment.

Figure 3
Cumulative probability versus family number for tetrapeptidic fragment.

Figure 2
Cumulative probability versus family number for tripeptidic fragment.



(iii) Generators are the only method to study high-dimen-

sional conformation spaces (pentapeptides, hexapeptides).

(iv) Some generated families are regions of high confor-

mation density rather than local maxima.

(v) It is difficult to classify large flat density regions (like the

� region in proteins). The primitive optimization procedure is

not able to move the conformation to the nearest maximum.

(vi) It is difficult to detect conformation families close to a

dominant conformation family.

(vii) In higher dimensions the signal-to-noise ratio is small

and only top conformation families can be reliably detected

(the noise region is a region where the number and position of

conformation families depend on the number and selection of

structures used for the analysis).

The pentapeptidic conformation families were generated by

two methods. The first was by using tripeptidic/tripeptidic

combinations. The second method is based on combination of

tetrapeptidic and dipeptidic families. Because of the polarity

of the polypeptide chain both combinations were considered:

dipeptidic/tetrapeptidic and tetrapeptidic/dipeptidic. There

were approximately 600 combinations above the noise level,

which in this case was reduced to 3. By applying ten optimi-

zation cycles, the number of conformation families converged

to 210–220. The conformation families generated by all

methods were merged and the merging resulted in 269

conformation families (P > 0.01%). An extensive table for

AlphaP is deposited as supplementary material. Only 194

conformation families are needed to cover 95% of the

experimental conformations. The number of conformation

families covering 90% of the conformation space is 131.

Whether this relative drop in the number of conformation

families is a property of the pentapeptidic group (all main

structure features are already sufficiently reflected by tetra-

peptidic AlphaQ) or is an artifact of the generator method

remains unanswered. The overall features of pentapeptidic

families are the same as for tetrapeptidic families. For obvious

reasons, no principally new basic conformation types are

detected. Nevertheless, the conformation probabilities may be

important for statistically grounded model building.

4. Conclusions

Several conclusions can be drawn from the present analysis for

automated model building. Information from higher dimen-

sional spaces can be used for rational sampling of torsion-

angle space in lower dimensions. Some less frequent dipeptidic

conformations that cannot form an independent peak on a

two-dimensional map in the proximity of a more dominant

conformation family simply accumulate as independent

families in higher dimensions because they are usually found

in a building block with a specific structural function. From

analysis of tripeptidic fragments it has become clear that the D

and Z (bridge) conformations should now be considered to be

conformational primitives. Tetrapeptidic families add further

information on how to sample the flat � region [B, C, Z and

(�150, �170�)]. The extended set of search dipeptidic frag-

ments is A, B, C, G, X, E, D and Z.

The AlphaT fragment, defined by the tripeptidic confor-

mation families, appears to be a suitable search fragment for

automatic model building at lower resolutions. The number of

conformation families is moderate (24–25; only 13 families are

needed to cover 90% of the conformation space), while 16

conformers can easily be handled by PRCTF in the present

version of the program NUT (Pavelcik, 2006b). Reconstruc-

tion of the protein structure with conformation families is

further facilitated by the flexible-fragment concept and

torsion-angle refinement (Pavelcik, 2003).

Building protein structure by PRCTF with the tetrapeptidic

AlphaQ and pentapeptidic AlphaP fragments would be more

complicated. Only top conformations could be used for the

direct location of tetrapeptidic fragments in the electron

density because PRCTF is a computationally intensive

procedure. There is also a problem with varying fragment

radii. On the other hand, tetrapeptidic and pentapeptidic

tables are useful for loop building and connecting partial

chains to larger units by chain extension directly into electron

density.

An advantage of the mapping method over clustering is that

the results are in torsion angles. Any molecular-modelling

program can generate the atomic coordinates of the fragment

from its torsion angles. Reconstruction of fragment coordi-

nates from C� atoms in the cluster method is more compli-

cated and may not be unique. A disadvantage of the present

method is that direct mapping is computationally forbidden

for large fragments and the less reliable generator tool has to

be used.

In summary, the relative importance of individual confor-

mation families for biomacromolecular model building has

been established. The calculated results will be implemented

into new versions of the biomacromolecule model-building

programs NUT and HEL (Pavelcik, 2006a,b). Tripeptidic

conformation families are also suitable candidates for

computer programs developed to check protein structures.
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